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A B S T R A C T

The expressway is extremely important to transportation, but high road-surface temperatures (RST) can cause
many traffic accidents. Most of the hourly RST prediction models are based on numerical methods, but the
parameters are difficult to determine. Statistical methods cannot achieve the desired accuracy. To address these
problems, this paper proposes a machine learning algorithm that utilizes gradient-boosting to assemble a ReLU
(rectified linear unit)/softplus Extreme Learning Machine (ELM). By using historical data from the airport and
Badaling expressways collected between November 2012 and September 2014, sigmoid ELM, ReLU ELM, soft-
plus ELM, ReLU gradient ELM boosting (GBELM) and softplus GBELM were applied for RST forecasting, RMSE
(root mean squared error), PCC (Pearson Correlation Coefficient), and the accuracy of these methods were
analyzed. The experimental results show that ReLU/softplus can improve the performance of traditional ELM,
and gradient boosting can further improve its performance. Thus, we obtain a more accurate model that utilizes
GBELM with ReLU/softplus to forecast RST. For the airport expressway, our proposed model achieves an RMSE
within 3 °C, an accuracy of 81.8% and a PCC of 0.954. For the Badaling expressway, our model achieves an
RMSE within 2 °C, an accuracy of 87.4% and a PCC of 0.949.

1. Introduction

Expressways have been extremely important to the transportation in-
dustry, but bad road conditions often cause many accidents. One of the
most serious problems is high road-surface temperature (RST), which can
make tires easily explode. In this case, it is easy for the driver to operate
the vehicle improperly, which results in the occurrence of traffic accidents.
High RST also causes the asphalt in the road to swell, pit and be otherwise
damaged; any increase in vehicle traffic can also cause large areas of in-
tense damage. Thus, a high RST not only leads to accidents but also da-
mages roads. Therefore, forecasting RST is a significant method to prevent
traffic accidents and road damage. With the use of big data, expressway
RST forecasting can be determined more easily than using a traditional
way. Meteorological institutions have accumulated large amounts of road
data in past decades. By applying data mining algorithms to these data, we
can build a more accurate model.

RST is being studied all over the world. European researchers began
researching RST earlier and established a complete road monitoring
and RST forecasting system. For example, Germany [1] can forecast
road weather for the next 1–3 days. The United Kingdom [2] uses road
radar to monitor the road conditions. China started late but also es-
tablished a road monitoring system; for example, Beijing has built many
road monitoring stations, which can use the BJ-RUC (Beijing rapidly
updating cycle) to forecast the weather of the roads in Beijing. So far,
there are two methods to forecast the road temperature: numerical and
statistical.

Numerical methods use a combination of physics and math to es-
tablish an equation that can forecast the RST. Chapman [3] built a
model based on GIS (Geographic Information System). Bouilloud et al.
[4] established a model that can forecast RST and snow depth in France.
Sokol et al. [5] used a numerical method to forecast RST and used an
ensemble method to eliminate uncertainty. Liu et al. [6] built a model
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based on the conservation of energy; the model can forecast up to a
range of 24 h. Jia et al. [7] utilized basic principles of heat conduction
and built a model that can forecast RST for 4 moments per day. Feng
et al. [8] utilized conservation of energy and built an hourly RST
forecasting model. Meng et al. [9] combined the numerical simulation
products Common Land Mode (CoLM) [10] and BJ-RUC to build a
model that can forecast up to a range of 3–24 h. Yang et al. [11] es-
tablished a numerical model in Korea. Other researchers, such as Han
et al. [12] and Gan et al. [13], also used a numerical method to develop
a forecasting model.

Statistical methods build a model based on historical data and are
often easier to implement than numerical methods. Diefenderfer et al.
[14] and Qu et al. [15] used linear regression to build a daily highest
and lowest RST prediction model for multiple areas. Recently, re-
searchers have been able to obtain higher-quality data; Li et al. [16] Ma
et al. [17] used linear regression to build an hourly model and achieved
good results. Additionally, Lukanen et al. [18], Hua Tian et al. [19], and
Wu et al. [20] also built models based on statistical methods.

Numerical methods that are based on physics and that can simulate
the various factors of RST have strong universality. The numerical
method does not require observational data; in the early exploration of
a system, when there is a lack of data, the numerical method is the best
choice. The parameters of the numerical method are difficult to obtain;
therefore, depending on the historical data and the limited amount of
experimental information, the parameters of the model will be reduced
since there is no effective method to determine them. Thus, any para-
meters the model does have are low quality [21]. Additionally, nu-
merical methods are also very difficult to solve because they are based
on a system of equations.

Among statistical methods, multiple linear regression (MLR) is the
most commonly used approach. Statistical methods are easier than
numerical methods and only obtain the statistical relationship between
various factors and RST. Because statistical methods only consider the
influence of the environment on the RST, they have low accuracy. The
integrity and accuracy of statistical data can also affect the results.
However, obtaining parameters are easy to find and implement [22].
Moreover, many researchers work on statistical method to enhance
accuracy, generalization, and impact on the system; therefore, statis-
tical methods are becoming increasingly popular [21].

Parameters of most numerical methods are difficult to obtain.
Building an accurate, hourly forecast model based on traditional sta-
tistical methods is difficult but frequently done. In the big data era,
many problems have been solved by using big data in many domains,
such as health care [23], medicine [24], recommendation systems [25]
and so on. Machine learning (ML) plays a very important role in the big
data research field. Like statistical methods, ML forecasts RSTs based on
historical data, but the method can approximate more complex func-
tions. To get good results, statistical methods need a large amount of
data and accurate feature selection; however, ML can also achieve good
results with only limited feature selection and minimal data. The
parameters of ML are easy to obtain via an optimization algorithm.

In this paper, we utilize an ML algorithm called extreme learning
machine (ELM) [26] to forecast RST. ELM is well known because it has
a fast training speed and good generalized performance, but it also has
some disadvantages. The sigmoid function is a very important activa-
tion function used in traditional ELM training. Recently, ReLU [27] and
softplus [27] activation functions are very popular in deep learning
because they have sparsity limits that are seldom used in ELM. Al-
though some researchers [28,29] have applied ReLU and softplus to
ELM classification problems and have demonstrated that ReLU and
softplus improved the performance of ELM, little research attention is
given to regression problems such as RST forecasting. In this work, we
replaced the sigmoid function with ReLU or softplus. Then, we applied

ELM with ReLU and softplus for RST forecasting. Because the weights
and bias between the input layer and hidden layer are randomly as-
signed in ELM, the performance of ELM is a little random. To reduce the
randomness of ELM, applying ensemble methods is a good idea. Among
the ensemble methods, gradient boosting [30] is very popular in data
mining research and always gets good results. Thus, we utilized gra-
dient boosting to ELM to reduce randomness effectively. To build an
accurate hourly forecasting model, an accurate weather forecasting
system is necessary. We have BJ-RUC data, which is an accurate
weather forecasting system. Therefore, we combined the proposed ML
method with BJ-RUC and achieved good results.

2. Methodology

The main idea of the method described herein is to apply gradient
boosting to ensemble ELM via an ReLU/softplus activation function. In
this paper, gradient boosting was used to optimize a cost function over
the function space by iteratively choosing an ELM that points in the
negative gradient direction. The basic GBELM process is shown in
Fig. 1.

2.1. Extreme learning machine

ELM is a type of SLFNs created by Guangbin Huang. Huang thought
that training SLFNs based on the BP algorithm and gradient descent is
not only inefficient but can also easily get stuck in a locally optimal
solution. If an input matrix X, and an activation function g(x), are given,
then an SLFNs can be represented as follows:

= +T g(W*X b)β (1)

Fig. 1. The basic Gradient Extreme Learning Machine Boosting process.
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where W represents the weights matrix that connects the input layer
and hidden layer, b represents the bias matrix of hidden layer, β re-
presents the connection weights between the hidden and output layer,
and T is the target value matrix. This equation can be reduced as fol-
lows:

=T Hβ (2)

where H represents the activation of the hidden layer. Traditionally,
back-propagation was used to find W, b and β. Huang thought that W
and b are not necessarily tuned, and they can be randomly selected.
Once the random values are assigned to W and b, H is unique, and β can
be computed as follows:

= Hβ T† (3)

where H† is the Moore–Penrose generalized inverse of matrix H. ELM
can be regularized by adding a regularization term C, which changes
the regularization form of ELM as follows:

= ⎛
⎝

+ ⎞
⎠

−
H

C
HHβ 1 TT T

1

(4)

2.2. Extreme learning machine with ReLU/softplus

Activation functions play an important role in ELM learning tasks;
ELM will have good performance with a suitable activation function.
The sigmoid function took an important role in traditional ELM net-
work modeling in the past. The sigmoid function is a good threshold
function. The sigmoid function is a continuous function that has a
characteristic “S”-shaped curve. Fig. 2 shows the shape of the sigmoid
function. The sigmoid function can be defined as follows:

=
+ −

x
x

g( ) 1
1 exp( ) (5)

Recently, a new activation function called ReLU (rectified linear
unit) has become mainstream and has been widely used in deep
learning, such as a CNN (convolutional neural network) [31] and DBN
(deep belief network) [32]. Compared with the sigmoid function, ReLU
is closer to the biological activation model. ReLU can regularize neural
networks without pre-training; therefore, neural networks with ReLU
have better generalization performance. ReLU is defined as follows:

=x xg( ) max(0, ) (6)

ReLU has many advantages, but it implements sparse limits by
setting the activation of neurons to zero. However, mandatory sparse

limits may hurt the generalization performance. Softplus was estab-
lished to solve the problem above; it is a smooth approximation of
ReLU. Softplus overcomes shortcomings by employing lax sparse limits
and is closer to the biological activation model than ReLU. Fig. 3 shows
the shape of ReLU and softplus. Softplus is defined as follows:

= +g(x) ln(1 exp(x)) (7)

2.3. Gradient boosting extreme learning machine

Gradient boosting is an ML algorithm for both the regression and
classification problems. This algorithm produces a robust estimator in
the form of an ensemble of weak estimators, typically decision trees.
Gradient boosting optimizes a loss function over the estimator space by
iteratively choosing an estimator that points in the negative gradient
direction. In this paper, we use ELM with ReLU/softplus as the base
estimator of the gradient boosting, which is called gradient ELM
boosting (GBELM). The least square loss function is chosen as the loss
function used in gradient boosting. In this case, gradient boosting
considers additive models of the following form:

∑=
=

αh xF(x) ( )
m

M

m
1 (8)

where F(x) is the final model, α is the learning rate, M is the number of
weak estimators, and h x( )m is the base estimator. In this paper, h x( )m is
ELM with ReLU/softplus. Gradient boosting builds the additive model
in a forward moving fashion:

= +−F x F x αh x( ) ( ) ( )m m m1 (9)

At each stage, an ELM is chosen to minimize the loss function L
given the current model −F x( )m 1 :

∑= + −−
=

−F x F x αargmin h L y F x h x( ) ( ) ( ) ( , ( ) ( ))m m
i

n

i m i1
1

1
(10)

where n represents the samples, and y is the target value. For the least
square loss function, the initial model, F0, usually chooses the mean
target values. In the multi-output case, F0 chooses the mean target va-
lues at each output.

Fig. 2. Sigmoid function.
Fig. 3. ReLU and softplus functions.
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3. Experiment settings

3.1. Dataset

In this paper, weather forecasting data from the BJ-RUC [33] and
from the Beijing road monitor station were used to forecast the RST. BJ-
RUC is an RUC system developed for Beijing city. RUC is an inter-
nationally popular numerical forecast mode. The BJ-RUC system is
activated every 3 h, 8 times per day. This paper uses the RUC numerical
forecast data with 3 km resolution; Thus, in the range of BJ-RUC, every
3 km, the grid is divided into a grid each vertex of the grid is a fore-
casting site. BJ-RUC records height fields, upward long wave radiation,
ground surface pressure, humidity, downward shortwave radiation, 2-
m temperature, longitude 10-m wind, altitude 10-m wind and hourly
accumulated precipitation. In this paper, we have selected several of
the nearest BJ-RUC forecast site data, from the road monitoring station,
at 5:00, 8:00, 17:00.

Road monitoring stations that monitor the various expressways in
Beijing produce a lot of data per hour. In this paper, 2 stations with
heavy traffic flow and complete data were selected to analyze the
A1027 airport expressway and A1412 Badaling expressway. Road
monitoring stations recorded the RST, total precipitation, precipitation
intensity, road conditions, temperature, height of snow and rain.

The data from November 2012 to April 2014 and the data from June
2014 to August 2014 were used as training data. Data from September
2014 were used as test data.

3.2. Data preprocessing

Data pre-processing is mainly divided into 2 parts: missing value
processing and data normalization.

Since the BJ-RUC itself has prediction ability, using the forecast
value of BJ-RUC to replace the missing value is the best way. Thus, we
used the forecasting data of the previous moment to replace the missing
value of the current moment. However, the method is not suitable for a
large range of missing values. Therefore, we drop the large range of
missing values directly. Normalization can scale the data to a small
range, which facilitates neural network convergence. In this paper, we
normalized our data in the interval [0,1].

3.3. Experiment settings

For BJ-RUC, select height fields, upward long wave radiation,
ground surface pressure, humidity, downward shortwave radiation, 2-
m temperature, longitude 10-m wind, altitude 10-m wind and hourly
accumulated precipitation. Past 72 h and future 24 h, totally. For road
monitor station, select RST, total precipitation, precipitation intensity,
road condition, temperature. In this paper, we analyze the correlation
between the input features and output. We also select the features
whose correlations with each output exceed 0.5 as the final input. There
are many BJ-RUC forecasting sites that surround road monitoring sta-
tions. To determine how many BJ-RUC forecasting sites surround the

road monitoring stations that yields the best result, we tested a different
number of BJ-RUC forecasting sites and selected the number with the
best performance. Because the model forecasts the RST of the upcoming
24 h, the output layer of all the ELM we used is 24 units. Grid search
and K-Fold cross-validation were used to choose the parameters of the
models.

In this paper, we choose four evaluation methods that are usually
used in RST forecasting to evaluate the model.

1) Root mean squared error (RMSE):

∑= −
=N

O PRMSE 1 ( )
i

N

i i
1

2

(11)

where Oi denotes the observed RST, Pi denotes the predicted RST, and N
denotes the number of evaluation samples.

2) Accuracy:
If the difference between the maximum temperature of the road and

its calculated value is that it is within± 3 °C, then the forecast is ac-
curate; otherwise it is wrong.

3) Pearson correlation coefficient (PCC):

∑ ⎜ ⎟⎜ ⎟=
−

⎛
⎝

− ⎞
⎠

⎛
⎝

− ⎞
⎠=N

O O
S

P P
S

PCC 1
1 i

N
i

o

i

p1

where Oi denotes the observed RST, Pi denotes the predicted RST, N
denotes the number of evaluation samples, and S denotes the standard
deviation.

4. Results and discussion

First, we explored the number of BJ-RUC forecast sites for RST
forecasting. Then, we made use of the data from November 2012 to
August 2014 and the data from June 2014 to August 2014 to build
models, and we compared these models to find the advantage of each.
The September 2014 data were used to evaluate the model. All the
experiments were carried out on a machine with Intel I7 6770HQ,
memory 16 GB, 64-bit operate system, and Anaconda 4.2.0. All the
parameters were selected by grid search and 3-folders cross-validation.
In grid search, the range of hidden units is 10, 20, 30……300; the range
of the number of estimators is the same as the hidden units number; the
range of learning rate is 0.001, 0.005, 0.01, 0.05, 0.1, 0.5; the range of
the regularization coefficient is the same as the learning rate.

4.1. Selection of the number of BJ-RUC forecasting sites

To determine how many of the nearest BJ-RUC forecasting sites
from the road monitor station are the most appropriate, we used sig-
moid ELM, ReLU ELM, softplus ELM, ReLU GBELM and softplus GBELM
to model the data from June to August 2014 via a different number of
BJ-RUC forecasting sites.

From Figs. 4–9, we can see that no methods can be improved by
adding more BJ-RUC forecasting sites. The performance of ReLU ELM
and softplus ELM declined less than the sigmoid ELM, because ReLU
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and softplus have sparsity limitations to solve any redundant features,
while the sigmoid ELM, with regularization term, has no such powerful
sparsity limitations. The performance of GBLEM is almost same with the
different BJ-RUC forecasting sites, indicating that GBELM reduces the
feature selection requirements.

4.2. Result of different methods

In this paper, we use the data of monitoring stations A1027 and
A1412 as test data to compare 5 prediction methods: sigmoid ELM,
ReLU ELM, softplus ELM, ReLU GBELM and softplus GBELM.

Tables 1 and 2 show the RMSE, accuracy, PCC, modeling time and

Fig. 4. The RMSE of five methods using different numbers of nearest BJ-RUC forecasting sites in A1027 road monitor station.

Fig. 5. The accuracy of five methods using different numbers of nearest BJ-RUC forecasting sites in A1027 road monitor station.
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forecasting time of the A1027 and A1412 monitoring stations. By
comparison, it is easy to find that GBELM with ReLU/softplus have the
best performance for either station. For station A1027, ReLU/softplus
activation function improves the accuracy by more than 10%, and re-
duces the RMSE to less than 3 °C. Gradient boosting further improves
the accuracy to more than 80%. In general, ReLU GBELM has the best
performance. For station A1412, ReLU GBELM has the best perfor-
mance. ReLU/softplus also works well on this monitoring station, im-
proving the accuracy by approximately 20%. Only when the RMSE-

based ReLU GBELM and softplus GBELM are within 2 °C, the accuracy is
greater than 85%. GBELM, with either an ReLU activation function or
softplus activation function, can obtain a similar performance. It is hard
to say which activation function is better. Experiments are necessary
when selecting the activation function (e.g., ReLU v softplus). Figs. 10
and 11 show the best A1027 and A1412 models. From these figures, we
can see that for over 40 °C high RST forecasting, these modeling per-
formances are good, but the final result is a little on the higher side.

Compared with Ref. [8], their model yielded a PCC of 0.9 on the

Fig. 6. The PCC of five methods using different numbers of nearest BJ-RUC forecasting sites in A1027 road monitor station.

Fig. 7. The RMSE of five methods using different numbers of nearest BJ-RUC forecasting sites in A1412 road monitor station.
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Badaling expressway, while the PCC of our model on the Badaling ex-
pressway is 0.949. Ref. [16] uses 4 years of hourly data and a lot of
analysis to build a statistical model, and their temperature distribution
in autumn is similar to A1027. The accuracy of their model in autumn is
76.7%, whereas the accuracy of our model on A1027 is 81.8%; more-
over, we use much fewer data and a simpler feature selection. Com-
pared with ELM, GBELM has a much higher accuracy and a higher PCC,
which means that the trend fitting process is better. Therefore, com-
bined GBELM with BJ-RUC can obtain a more accurate hourly model

than a numerical method, statistical method and ELM. We also need
fewer data, and the method reduces the requirements for feature se-
lection.

ReLU ELM has the shortest modeling time. This method can com-
plete the modeling within 0.1 s, but ReLU ELM and softplus ELM can
also complete the modeling within 0.1 s. People cannot feel an obvious
difference in time. ReLU GBELM and softplus GBELM takes much longer
to complete the modeling than the other three methods, but they can
complete the modeling within 10 s, which is acceptable. All the

Fig. 8. The accuracy of five methods using different numbers of nearest BJ-RUC forecasting sites in A1412 road monitor station.

Fig. 9. The PCC of five methods using different numbers of nearest BJ-RUC forecasting sites in A1412 road monitor station.
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methods can forecast RST within 1 s, so people will not feel a significant
time difference.

5. Conclusions and future work

This work proposed an ensemble ML algorithm called GBLEM,
which applies the ReLU and softplus functions to ELM in a regression
problem. GBELM not only obtains better results than traditional
methods but also reduces the requirement for feature selection. We
applied GBELM to RST forecasting and built an accurate hourly model.
By comparing ELM using sigmoid-based activation functions and ReLU
and softplus activation functions, we found that ReLU and softplus
obviously improve the performance of ELM in a regression problem.
Gradient boosting helps ReLU ELM and softplus ELM improve their
performance further. Softplus cannot replace ReLU as ReLU replaces the
sigmoid function. When applying GBELM to a machine learning pro-
blem, experiments are necessary to select the appropriate activation
function between ReLU and softplus. Few ML researchers pay attention
to the RST forecasting problem. We applied an ML algorithm to RST

forecasting and got better results than the numerical and statistical
methods.

In this paper, we use a least square loss function for GBELM with
ReLU and softplus. In the future, we will try other robust loss functions,
such as Huber or Quantile loss functions to further improve the per-
formance. Xgboost can also be applied to ensemble ELM and may ob-
tain a more accurate model than GBELM.
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The bold values mean the best values.

Fig. 10. A1027 results using ReLU GBELM with 100 hidden units, 130 esti-
mators and a 0.05 learning rate.

Fig. 11. A1412 result using softplus GBELM with 50 hidden units, 160 esti-
mators, learning rate is 0.05.
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