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Abstract—In recent years, air quality has become a severe 
environmental problem in China. Since bad air quality 
brought significant influences on traffic and people’s daily life, 
how to predict the future air quality precisely and subtly, has 
been an urgent and important problem. In this paper, a
Spatio-Temporal Extreme Learning Machine (STELM)
method is proposed for air quality prediction. STELM
considers temporal and spatial characteristics of air quality 
data and related meteorological data, constructs a prediction 
model based on ELM, and realizes air quality prediction with 
more than 80% precision. A prototype system is implemented 
and the experiments on practical air quality data in Beijing 
validate the effectiveness of our method and system.
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I. INTRODUCTION

In the big data era, large amounts of temporal and spacial 
data have been accumulated in environment, meteorology, 
traffic, medicine, etc. Generally speaking, a spatio-temporal 
series are usually used to describe a variable which changes 
along with time and spatial location. For instance, PM2.5 
concentration is monitored and recorded every hour in 35 air 
quality monitoring stations in Beijing.

Spatio-temporal modeling aims at describing a 
relationship between spatio-temporal variables and 
predicting the value of spatio-temporal series. This paper 
proposes a novel method based on ELM (Extreme Learning 
Machine) to predict air quality. ELM is proposed by Guang 
Bin Huang [1], in which the connection weight between 
input layer and hidden layer is generated randomly, and the 
threshold value of hidden layer is not adjusted during the 
training process. It is easy to obtain the unique optima, and 
we only need to set the number of hidden layer neurons. 
Compared to traditional training method, it has faster 
learning rate and better generalization performance. 

So far, there are mainly two methods on air quality 
prediction, one is numerical simulation, and the other is 
statistical regression. Numerical simulation uses physical and 
chemical equation to simulate the pollution process, and then 
predicts air quality. It needs plenty of input parameters and 
complex calculation. Statistical regression has two branches, 
logistic regression and artificial intelligence. They need 
fewer input parameters and simple calculation, but the 
prediction accuracy is fewer than that of numerical 
simulation.

In terms of artificial intelligence, ANN (Artificial Neural 
Net) is widely used. Most existing ANN methods need many 
configuration parameters, and it is time-consuming to train 
an ANN, and more importantly, it is easy to fall into local 
optima, so the prediction accuracy may be influenced by 
input data and cannot meet the actual needs. Besides, most 
models didn’t take meteorology especially wind into account. 
However, wind direction and wind force have strong 
influence on PM2.5. In practice, due to large dataset and low 
processing speed, the execution time is relatively long. 

In order to overcome the drawbacks of existing methods,
the authors propose Spatio-Temporal Extreme Learning 
Machine (STELM) method for air quality prediction, which
can improve both the accuracy and processing speed.
STELM is based on ELM model, so it has the advantages of 
fast training, less configuration parameters, and ease of
obtaining global optima. In order to further improve the 
prediction accuracy, wind force and wind direction are 
brought into modeling. For large dataset, we can separate 
spatio-temporal data into different subareas by clustering to
improve the training speed and accuracy efficiently.

II. RELATED WORK

As big data emerges, data mining has brought new 
solutions to air quality prediction. Recently logistic 
regression is seldom used by researchers; instead, ANN is 
much more popular. Lal et al. [2] and Nejadkoorki et al. [3] 
has proved that ANN is a promising method on air quality 
prediction. But training an ANN is time-consuming and 
always has local optima. Russo et al. [4] used a set of 
stochastic variables that represent the relevant information 
on a multivariate stochastic system as input for an ANN 
model for air quality forecasting. It reduces the training time 
without decreasing the accuracy. Jiang et al. [5] proposed 
SOCNN (self-organizing competitive neural network) based 
on the self-organizing clustering of samples and improved 
the accuracy efficiently. Samia et al. [6] combined ARIMA 
(Autoregressive Integrated Moving Average) and ANN.
Kuma et al. [7] used PCA (Principal Component Analysis) 
and ANN to predict air quality of four seasons. It can 
accelerate the training speed. Zheng et al. [8] used a
temporal predictor to model the local factors of air quality, a 
spatial predictor to model global factors, and a dynamic 
aggregator to combine the predictions of spatial and temporal 
predictors. They attained 44.4% to 74.9% predict precision 
from a full day to one hour.
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Most existing methods try to solve two main problems of 
traditional ANN, i.e., slow convergence speed and ease of 
falling into local optima. They just reduce the possibility, 
while ELM can achieve unique global optima, and has a
good convergence speed.

III. PROPOSED METHOD

A. Main Steps of STELM 
As introduced above, the ELM algorithm provides a

better learning strategy in the application of traditional data. 
However, the special properties of PM2.5 data make it 
necessary to extend the ELM into the field of geographical 
domain. Then, STELM is developed in this work with the 
incorporation of the special properties, e.g., spatial 
dependency and spatial heterogeneity. 

The main steps of STELM are described in Figure 1. The 
input of the system are spatio-temporal sequences regarding 
air quality and meteorology data. Then we group spatio-
temporal sequences into several clusters through clustering 
algorithm, e.g., GeoSOM (Geographic Self-Organizing 
Maps). For each cluster, a STELM model is built based on 
historical air quality, meteorological spatio-temporal 
sequences, and adjacent air quality data. Meteorological 
spatio-temporal sequences include temperature, humidity,
wind direction, wind force, and precipitation. Since PM2.5 
and PM10 have close relation with wind direction and 
strength, the air quality data in adjacent stations are 
considered as input features to highlight the influence of 
wind. Then we construct STELM models for each cluster,
and predict future air quality based on the trained model.

Spatio-Temporal Sequences

Spatio-Temporal 
Sequences Clustering

 Historical 
Air Quality

Air quality prediction based on Spatio-Temporal ELM

Meteorological 
Spatio-Temporal 

Sequences

Adjacent 
Air Quality 
Considering 

Wind Influence

Construct STELM model for each cluster

Prediction

Future PM2.5 Concentration

For each cluster

Figure 1. Main steps of STELM. 

B. Clustering 
Considering the spatio-temporal properties of air quality 

data, we adopt clustering algorithm to group the sequences 
into different subareas according to their space locations. 
The similarity of sequences in one subarea should be 

different from that with other subareas as much as possible, 
at the same time the positions of sequences in one subarea 
should be adjacent in space.

In this paper, we select GeoSOM algorithm for spatio-
temporal sequences clustering. GeoSOM adapts Self-
Organizing Maps (SOM) to consider the spatial nature of 
geographic data [9]. SOM is usually used for mapping high-
dimensional data into one, two or three-dimensional feature 
maps, which are grids of units or neurons. In GeoSOM, the 
search for the Best Matching Unit (BMU) is implemented by 
two phases, the first phase settles the geographical 
neighborhood where it is admissible to search for BMU, and 
the second phase performs the final search using the other 
multidimensional components. The search neighborhood is 
controlled by a parameter k, defined in the output space [10]. 

C. STELM Model 
As seen in Figure 2, there are two differences in the 

structure of STELM compared with the traditional network 
structure. 1) Spatio-temporal autocorrelation variable is 
incorporated into input layer, whose aim is to deal with 
spatial dependence. 2) The connecting weight vector is 
regarded as the function of spatial location, rather than 
independent of it, whose aim is to deal with spatial 
heterogeneity. g y

Figure 2. The structure of STELM 

The input variables are composed of two parts: the 
covariates and autocorrelation variables. In Figure 2,
x1(1), …, xm(t) represent the covariates, namely the 
meteorological elements, while z’(t-1) refers to the 
autocorrelation variables, namely previous concentrations of 
PM2.5. In the field of spatial analysis, spatial autocorrelation 
variable is defined via spatial weights matrix W (N N). 
Assume that Z(t) is the vector of PM2.5 concentration, then 
the spatio-temporal autocorrelation variable Z’(t-1) (Z’(t-1) = 
[ z1’(t-1), …, zn’(t-1)]) can be defined as WZ(t). General 
methods of determining W are based on spatial distance or 
spatial contiguity. Both of them make the isotropy 
assumption. However, since air pollutant always transport 
along with the direction of wind, the spread process of air 
pollution exists obviously anisotropic. 

In the case of the central point p0 in Figure 3, if the wind 
direction belongs to NE, the PM2.5 concentrations at p0 may 
be affected by the p1, p2, p3, and p4. Obviously, the affect 
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degree has negative correlation with the angle and the 
distance. The angle is defined through the wind direction and 
the edge between two points, e.g., the angel NEp0p1, and the 
distance is defined through the spatial location of two points, 
e.g., 2

01
2

0 1 0 1( ) ( )x y yd x   (Euclidean distance). 

Figure 3. The influence of wind  

In order to deal with anisotropy, Gauss vector weight 
(GVW) is defined based on traditional Gauss kernel function. 
GVW combines the direction effect and distance effect to 
accord with the transport process of air pollutants. 
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in which dij and θij represent the distance variable and the 
angle variable. The distance is calculated by spatial location 
directly, and the angle variable is estimated by a combination 
of dynamic wind direction. Two conditional parameters m
and c are used to control the direction and distance effect. m
is regarded as anisotropic strength parameter. When m equals 
0, GVW is equal to traditional Gauss kernel function. c is 
also called bandwidth, which can adjust the smoothing of 
GVW.

STELM builds region-model through clustering partition. 
Spatio-temporal clustering is a process of grouping spatio-
temporal data into meaningful clusters according to its 
similarity in spatial and temporal domains [11]. The general 
geo-referenced time series clustering is used for clustering 
partition, then β(loc) is estimated in each cluster. Because 
parameters a and b are given randomly, they are independent 
of spatial location. Hence, these parameters are identical in 
all local models in order to simplify the calculation. 

Algorithm 1 presents the main steps of STELM.
Algorithm 1: STELM (SQ, P)  
Input: Spatio-temporal sequences SQ; the location of each 
spatial position (monitoring station) P
Output: Prediction model Mdl. 
BEGIN 

Construct the space distance matrix M; 
For each spatial position i, select a bandwidth c, and 
compute the Gauss vector weight matrix Wi,c

Assign randomly the input weight vectors ai (i = 1, …, 
l) and the threshold bi (i = 1, …, l) of the feedforward 
neural network; 

Calculate the hidden layer input vectors H; 
Compute the output weight vectors  

 ; 
Select the best matching model with minimum CV as 

the final prediction model for position i, in which p

Return model Mdl
END

The space distance matrix M can be represented as: p

in which dij is the Euclidean distance between position i and j. 
For each spatial position i, select a bandwidth c, the 

Gauss vector weight matrix Wi,c can be represented as: 

Wi,c

,

cc

in which , c ϵ {c1 , c2 , , cm}, and the 
value of c can be selected between minimum and maximum 
dij.

Suppose the length of each time series is k, we further 
define Hybrid spatial weight matrix as: y p g

The numbers of , , …,   are k, respectively. 
To calculate the hidden layer input vectors H,
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To compute the output weight vectors, the minimum cost 
function is calculated: 

Finally, we compare the models with different 
bandwidths c, and select 
as the final prediction model for position i. 

IV. IMPLEMENTATION AND EXPERIMENT

To evaluate the performance of our method, we use the 
air quality and meteorology data in Beijing during Apr. and 
May in 2014, to predict the PM2.5 in later 3 days, i.e., May 
29-31, 2014. There are 35 air quality monitoring station in 
Beijing. Each station records the concentrations of 6 main 
pollutants (NO2, CO, SO2, O3, PM10, and PM2.5). As far as 
meteorology data, temperature, humidity, wind direction, 
wind force, and precipitation are collected. 

After pre-processing like interpolation of missing value 
and elimination of abnormal value, all the spatio-temporal 
sequences are input to our system. First, GeoSOM is applied 
to cluster the PM2.5 sequences of 35 stations. After analysis, 
we found that when the number of clusters is 14, the 
maximum Sil index and minimum DB index could be 
achieved. Accordingly, the 35 stations are grouped into 14 
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clusters. For each cluster, we build a STELM model, based 
on which the values of PM2.5 in future 72 hours are 
predicted. 

Taking the Olympic Sports Center Station as an example, 
the prediction results in future 24 hours are shown in Figure 
4. Compared with proposed STELM method, the results of 
ELM and MLR (Multiple Linear Regression) are also listed 
as baselines. We can see that on May 29, 2014, the real value 
of PM2.5 varied greatly. The MLR method can only predict 
the coarse tendency, while ELM and STELM have much 
better prediction performance. Moreover, STELM 
outperforms ELM slightly in first 15 hours and greatly after 
15 hours, especially when PM2.5 has sudden changes in the 
17th and 22nd hour. 

Figure 4. Prediction results (Olympic Sports Center Station).  

The Mean Relative Error (MRE) for 35 monitoring 
stations in future 12 hours is shown in Figure 5. It can be 
seen that the MRE in first 12 hours is relatively low. The 
Mean Absolute Error (MAE) for 35 monitoring stations in 
future 24 hours increases as time passes. The calculation
equations of MRE and MAE are listed below: 
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Figure 5. Average relative error for 12h prediction (left). Mean absolute 
error for 24h prediction (right). 

To validate the prediction precision, we believe the 
predicted value is correct if the predicted value and real 
value are in the same level. As reported by China's State 
Environment Protection Agency, the air pollution level is as 
follows: 0-50, Excellent; 51-100, Good; 101-150, Slightly 

Polluted; 151-200, Lightly Polluted; 201-250, Moderately 
Polluted; 251-300, Heavily Polluted; 300+, Severely 
Polluted. The overall precision in first 12, 24, 48, 72 hours 
are 82%, 78%, 71%, and 63%, respectively. 

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an algorithm for air quality 
prediction called STELM for short. Combining the 
advantages of spatio-temporal ANN and extreme learning 
machine, it is suitable to spatio-temporal sequences modeling 
and prediction, with the properties of fast training, less 
configuration parameters, and high precision. STELM 
considers the spatial heterogeneity and the influence of wind, 
and achieves effective generalization performance and higher 
precision. The real-world application on PM2.5 prediction in 
Beijing demonstrates the usefulness and effectiveness of 
STELM. In the future, we will improve the precision and 
reduce the absolute errors, and merge more data sources to 
further increase the precision. 
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